Identification of nonlinear errors-in-variables models

نویسندگان

  • István Vajk
  • Jenö Hetthéssy
چکیده

The paper is about a generalization of a classical eigenvalue-decomposition method originally developed for errors–in-variables linear system identification to handle an important class of nonlinear problems. A number of examples are presented to call the attention to the most critical part of the procedure turning the identification problem to a generalized eigenvalue-eigenvector calculation problem with symmetrical matrices. The elaborated method generates consistent parameter estimation. Simulation results demonstrate the effectiveness of the proposed algorithm. Copyright © 2002 IFAC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement Error Models

Many economic data sets are contaminated by the mismeasured variables. The problem of measurement errors is one of the most fundamental problems in empirical economics. The presence of measurement errors causes biased and inconsistent parameter estimates and leads to erroneous conclusions to various degrees in economic analysis. Techniques for addressing measurement error problems can be classi...

متن کامل

Nonlinear‎ ‎Regression Models Based on Slash‎ ‎Skew-Elliptical Errors

‎In this paper‎, ‎the nonlinear regression models when the model errors follow a slash‎ ‎skew-elliptical distribution‎, ‎are considered‎. ‎In the special case‎ ‎of nonlinear regression models under slash skew-t distribution‎, ‎we‎ ‎present some distributional properties‎, ‎and to estimate their‎ ‎parameters‎, ‎w...

متن کامل

Estimating parameters of dynamic errors-in-variables systems with polynomial nonlinearities

An approach for identifying single-input single-output discrete-time dynamic nonlinear errors-invariables systems is presented where the system model can be linearized such that it is expressed as a linear combination of polynomials of input and output observations. We assume white Gaussian noise on both input and output, characterized by a noise magnitude and a normalized noise covariance stru...

متن کامل

Nonlinearly Structured Low-Rank Approximation

Polynomially structured low-rank approximation problems occur in • algebraic curve fitting, e.g., conic section fitting, • subspace clustering (generalized principal component analysis), and • nonlinear and parameter-varying system identification. The maximum likelihood estimation principle applied to these nonlinear models leads to nonconvex optimization problems and yields inconsistent estima...

متن کامل

Identifying dynamic systems with polynomial nonlinearities in the errors-in-variables context

Many practical applications including speech and audio processing, signal processing, system identification, econometrics and time series analysis involve the problem of reconstructing a dynamic system model from data observed with noise in all variables. We consider an important class of dynamic single-input single-output nonlinear systems where the system model is polynomial in observations b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2003